HS3

FAUT-IL SE PROTEGER DES SONS ?

1.TOUS LES SONS SONT-ILS AUDIBLES ? L'AUDIOGRAMME

Un audiogramme est un graphique réalisé souvent par un médecin ORL pour vérifier l'audition d'une personne.

1.1. AUDIOGRAMME D'UNE PERSONNE A L'AUDITION NORMALE

Voici l'audiogramme d'une personne à audition normale.

1.1.1. Donner la signification de OG et de OD.

1.1.2. Donner la signification de Hz.

Lors de la réalisation de l'audiogramme, on fait écouter des sons **purs** à la personne à différentes fréquences.

1.1.3. Citer les 6 fréquences utilisées pour réaliser le test.

Conclusion :

L'oreille humaine permet d'entendre des sons de fréquences de 20 à 20 000 Hz. Plus la fréquence devient élevé, plus le son devient aigu. On parle de hauteur d'un son.

- Pour info :

<u>Ultrasons</u> : sons de fréquences supérieures à 20 000 Hz <u>Infrasons</u> : sons de fréquences inférieures à 20 Hz

Le chat perçoit les sons de fréquences élevées jusqu'à 25 000 Hz, le chien jusqu'à 35 000 Hz, le dauphin jusqu'à 100 000 Hz

L'éléphant perçoit les infrasons de fréquences inférieures à 20 Hz. **1.1.4.** Donner la signification de dB :

<u>Retenons</u> : Le niveau d'intensité acoustique se mesure en décibel (dB) avec un sonomètre.

Sur l'audiogramme apparaît dB HL, HL signifie « hearing level ». En fait, le niveau 0 dB correspond à une oreille qui entend parfaitement. La personne qui effectue l'audiogramme parcourt les 6 fréquences. Si la personne n'entend pas un son d'une des fréquences, il augmente le niveau sonore de 5 dB et recommence le test.

1.1.5. A partir de l'audiogramme, préciser pour chaque oreille, les fréquences pour lesquelles la personne qui a réalisé l'audiogramme a augmenté l'intensité sonore.

1.2.1. Citer l'oreille qui présente la perte auditive la plus importante.

1.2.2. Citer les fréquences les plus atténuées.

1.2.3. Etude de la déficience auditive.

On choisit l'oreille qui entend le mieux et on observe la perte en dB aux fréquences 500 Hz, 1 000 Hz , 2 000 Hz et 4 000 Hz.

On effectue la somme des 4 pertes, on fait la moyenne arithmétique et on arrondit à l'entier supérieur. Calculer la moyenne en dB de la perte auditive.

1.2.4. En utilisant le tableau ci-dessous, déterminer le type de déficience auditive.

Perte tonale en dB	< 20 dB	de 21 à 40 dB	de 41dB à 70 dB	de 71 dB à 90 dB	de 90 dB à 119 dB	120 dB
Déficience	Audition normale et subnormale	Déficience auditive légère	Déficience moyenne	Déficience auditive sévère	Déficience profonde	Déficience auditive totale
Perception	La parole est perçue normalement	La parole est difficilement perçue à voix basse	La parole est perçue si on élève la voix	La parole forte à l'oreille est perçue	Seuls les bruits forts sont perçus	Aucun son n'est perçu

2. COMMENT PRESERVER SON AUDITION ?

2.1. NOTION DE BRUIT ET DE SON PUR. 2.1.1. Effectuer le montage suivant : х Oscilloscope

Les réglages de l'oscilloscope seront les suivants :

Sensibilité : 5mV/ DIV

Balayage : 0,5ms/DIV

2.1.2. Placer un moteur en fonctionnement (perceuse) devant le micro. 2.1.3. Relever l'oscillogramme du bruit observé à l'écran.

Oscillogramme d'un bruit

L'oscillogramme observé est celui d'un bruit.

2.1.4. Remplacer le moteur par le GBF muni de son HP (montage du 1.1.4.) et placé sur la fréquence 440 Hz (la 3) en signal sinusoïdal, et adapter les réglages de l'oscilloscope. **2.1.5.** Relever l'oscillogramme du son pur sur l'oscilloscope.

Oscillogramme d'un son pur

2.1.6. Mesurer la période du signal T.

2.1.7. En déduire la fréquence f du signal en utilisant la relation à retenir $f = \frac{1}{T}$

2.2. MESURE DE NIVEAU D'INTENSITE ACOUSTIQUE

2.2. Expérience :

2.2.1. Mesure du niveau d'intensité acoustique d'un baladeur MP3 : On effectue le montage suivant :

Le sonomètre est placé contre les oreillettes du lecteur MP3.

On mesure à l'aide d'un sonomètre, le niveau d'intensité acoustique en dB, en faisant varier le volume du lecteur MP3.

Compléter le tableau suivant :

Volume du lecteur	faible	bouton volume	bouton volume au
MP3		placé à mi-course	maximum
Niveau d'intensité acoustique en dB			

2.2.2. Placer les différents niveaux d'intensités sonores pour le lecteur MP3 dans le tableau ci-dessous :

EXEMPLES	Niveau d'intensité acoustique en dB	Impression	Niveau d'intensité acoustique du lecteur MP3
Avion au décollage	130	Douloureux	
Marteau-piqueur	120	Douloureux	
Concert et discothèque	110	Risque de surdité	
Baladeur à puissance maximum	100	Pénible	
Moto	90	Pénible	
Automobile	80	Fatigant	
Aspirateur	70	Fatigant	
Grand magasin	60	Supportable	
Machine à laver	50	Agréable	
Bureau tranquille	40	Agréable	
Chambre à coucher	30	Agréable	
Conversation à voix basse	20	Calme	
Vent dans les arbres	10	Calme	
Seuil d'audibilité	0	Calme	

2.2.3. Remplacer le lecteur MP3 par un radiocassette placé à 3 m du sonomètre et effectuer de nouveau les mesures. Comparer

2.3. INFLUENCE DE LA DISTANCE A LA SOURCE SONORE

2.2.1. Mesure du niveau d'intensité acoustique d'un radioCD. - <u>On effectue le montage suivant</u> :

Le son (qui correspond à de légères variation de pression dans l'air) se propage dans l'air. On place les sonomètre en face le HP du radioCD . On place le bouton volume du radio CD à mi-course. On relève le niveau d'intensité acoustique. On obtient le relevé suivant :

2.2.1. Compléter en choisissant la bonne réponse.

L'intensité acoustique _____lorsque la distance à la source sonore augmente. Le niveau sonore relevé par le sonomètre ______ à la distance de la source sonore.

Remarque:

2.4. QUELQUES CONSEILS POUR PROTEGER MON AUDITION

2.4.1. Citer 3 moyens simples de protéger votre audition.

2.5. LE CASQUE ANTIBRUIT

Une notice d'utilisation de casque antibruit contient les informations suivantes :

Les mesures	d'atténua	ation ont (été réalisée	s avec un	niveau s	onore de 10)0 dB.

Fréquence en Hz	125	250	500	1 000	2 000	3 150	4 000	6 300	8 000
Atténuation en dB	16,1	17,8	19,1	23,1	28,4	33,1	33,6	33,8	37,1 dB

2.5.1. Donner la raison pour laquelle les mesures ont été réalisées avec un niveau sonore de 100 dB.

2.5.2. Citer les 3 fréquences les plus atténuées.

2.5.3. Citer les 3 fréquences les moins atténuées.

2.5.4. Choisir :

Un casque antibruit atténue (fortement/faiblement) les sons de fréquences basses. Un casque antibruit atténue (fortement/faiblement) les sons de fréquences élevées.

2.5.5. Pour un son de niveau sonore au niveau du casque de100 dB et de fréquence 250 Hz, calculer le niveau sonore reçue au niveau de l'oreille et conclure.

Objectifs:

- Savoir qu'un son se caractérise par une fréquence exprimée en hertz
- Effectuer un montage simple
- Utiliser un GBF, un HP

Proposer, puis réaliser en classe une expérience permettant d'entendre les sons utilisés lors du test de l'audiogramme.

Donner la nature des sons écoutés.

Donner les limites de la perception du son par l'oreille humaine.

TP 1

A l'aide des matériels suivants : GBF, H.P., Cordons électriques, proposer puis réaliser une expérience permettant d'entendre les sons de fréquences suivantes :

 $f_1 = 250 \text{ Hz}$ $f_2 = 500 \text{ Hz}$ $f_3 = 1\ 000 \text{ Hz}$ $f_4 = 2\ 000 \text{ Hz}$ $f_5 = 4\ 000 \text{ Hz}$ $f_6 = 8\ 000 \text{ Hz}$ Donner la nature des sons écoutés (grave, médium, aigu)

Etablir la fréquence minimum, ainsi que la fréquence maximum que l'oreille humaine peut entendre.

Données :

son grave (20Hz à 300 Hz) son médium (300 Hz à 1 500 Hz) son aigu (1 500 Hz à 20 000 Hz)

TP 1

1) Effectuer le montage suivant et écouter chacun des sons purs précédents.

(On utilisera un signal sinusoïdal, et le bouton amplitude sera positionné à 1/4 du début)

Suivant la fréquence, le son obtenu est grave, médium ou aigu.

2) Compléter le tableau suivant :

son grave (20Hz à 300 Hz) son médium (300 Hz à 1 500 Hz) son aigu (1 500 Hz à 20 000 Hz)

- · · · · · · · · · · · · · · · · · · ·				- · ·		
Fréquence	250 Hz	500 Hz	1 000 Hz	2 000 Hz	4 000 Hz	8 000 Hz
du son						
en Hz						
Nature du son obtenu						
grave, médium, aigu						

En fait, les fréquences précédentes sont les plus utilisées lors d'une conversation entre personnes L'oreille humaine peut percevoir des sons de fréquences plus faibles ou plus importantes.

3) Faire varier la fréquence du GBF de 0 à 20 000 Hz, ainsi que le bouton amplitude du signal, pour déterminer le son de fréquence minimale et le son de fréquence maximale que vous pouvez entendre.

*f*_{basse} = _____

*f*_{haute} =_____

Objectifs:

- Comprendre ce qu'est un audiogramme
- Utiliser un logiciel informatique sur le son

Le logiciel gratuit « Audiogramme » permet d'avoir une approche de la confection d'un audiogramme. Il n'a aucune valeur médicale.

🗘 Audiogramme.			
100 Hz 200	1 kHz	F.4	10 kHz
Choix Test auditif Approximatio		Hz	

Réaliser l'audiogramme de chacune de vos oreilles.

Mode opératoire :

- 1) Brancher le casque sur le PC
- 2) Etalonner en appuyant sur le bouton
- 3) Choisir l'oreille dans choix du test auditif
- 4) Choisir Approximation grossière

- 5) Démarrer le test à l'aide du bouton
- 6) Appuyer sur la barre d'espace chaque fois que vous entendez le son.
- 7) A la fin du test, sauvegarder votre audiogramme à l'aide de la touche

TP 3

Objectifs:

- Mesurer le niveau d'intensité acoustique à l'aide d'un sonomètre

- Effectuer un montage simple
- Effectuer des expériences utilisant l'EXAO.

Proposer, puis réaliser en classe une expérience permettant de mesurer le niveau d'intensité acoustique. Etudier l'atténuation du son dans l'air.

Etudier l'atténuation du son en fonction de la distance par rapport à la source sonore.

TP 3

Objectifs:

- Mesurer le niveau d'intensité acoustique à l'aide d'un sonomètre
- Effectuer un montage simple
- Effectuer des expériences utilisant l'EXAO.

- Matériel utilisé :

- 1 diapason monté sur une caisse de résonance et son marteau
- 1 règle gradué
- 1 (ou 2 sonomètres) branché(s)sur une console EXAO
- 1 ordinateur muni du logiciel Atelier scientifique

Montage 1 : Partie A

Atelier Scientifig..

- 1) Placer le sonomètre à 20 cm du diapason.
- 2) Brancher la console EXAO sur l'ordinateur.
- 3) Allumer l'ordinateur.
- 4) Lancer le logiciel Atelier scientifique en cliquant sur le symbole
- 5) Lancer le module généraliste du logiciel.
- 6) Brancher le sonomètre muni de sa rallonge sur la console EXAO.
- 7) Placer le logiciel en mode acquisition.
- 8) Faire glisser le capteur chronomètre 1 en abscisses et le capteur sonomètre en ordonnées.
- 9) Cliquer sur le capteur sonomètre et configurer de la manière suivante :

	Grandeur	Mesure		
	Grandeur	L1	Unité	dBa
	Limites	de la gran	deur affichée	
	Min	40	Мах	110
10) Cliquer sur le chronomètre et pa	ramétre	er de la	a manière :	suivante :
Ĩ	Fonction d	u temps	Synchronisation	Mesure
	Durée d'	acquisition	15	s 💌
	Nombre	de points	15001 👻	
	Acquisiti	on continu	e 🗌 Te:1,	DOms

11) Cliquer sur l'onglet synchronisation et paramétrer de la manière suivante :

🖉 Synchronis	ation
Voie de synch	^{hro} 1 : Sonomètre
Niveau	80
Croissant 💿	Décroissant 🔿

12) Cliquer sur le **point vert**. Choisir un nom de fichier (exemple « enregistrement 1 »)

la console se met en attente de synchronisation

~		ζ.	·
;	、 /	1.1	``. /
i	17	~~	

- 13) Frapper le diapason.
- 14) Le graphique obtenu à l'écran, visualise le niveau sonore.
- Exemple de graphique obtenu :

15) A l'aide de l'outil pointeur, relever le niveau d'intensité acoustique L_A pour t = 4 s : $L_A = ____$

16) A l'aide de l'outil pointeur, relever le niveau d'intensité acoustique L_B pour t = 8 s : $L_A =$ _____

17) Compléter :

Plus le son est faible, plus le niveau d'intensité acoustique _____

Montage 1 : Partie B

1) Placer un second sonomètre muni de sa rallonge à 40 cm du diapason.

2) Placer le logiciel en mode acquisition.

3) Faire glisser le capteur chronomètre 1 en abscisses et les capteurs sonomètre en ordonnées en veillant que le capteur le plus proche s'appelle L1.

4) Cliquer sur le capteur sonomètre L1 et configurer de la manière suivante :

- 5) Cliquer sur le capteur sonomètre L2 et configurer le aussi de la même manière.
- 10) Cliquer sur le chronomètre et paramétrer de la manière suivante :

Fonction du temps	Synchronisati	ion	Mesure	
Durée d'acquisitior	n 15	*	s	×
Nombre de points	15001	~		
Acquisition continu	ie 🗌 Te	: 1,0)Oms	

11) Cliquer sur l'onglet synchronisation et paramétrer de la manière suivante :

🚽 🗹 Synchronisation	b
Voie de synchro	1 : Sonomètre 🛛 👻
Niveau	80
Croissant 💿	Décroissant 🔘

12) Cliquer sur le **point vert**. Choisir un nom de fichier (exemple « enregistrement 1 »)

la console se met en attente de synchronisation

13) Frapper le diapason.

14) Le graphique obtenu à l'écran, visualise le niveau sonore.

- Exemple de graphique obtenu :

15) A l'aide de l'outil pointeur, relever le niveau d'intensité acoustique L_1 (arrondi à l'unité) pour t = 3 s : $L_1 = ____$

16) A l'aide de l'outil pointeur, relever le niveau d'intensité acoustique L_2 (arrondi à l'unité) pour t = 3 s :

 $L_A = _$ ____

17) <u>Compléter</u> :

Lorsque l'on double la distance à la source sonore, le niveau d'intensité acoustique diminue d'environ